Probabilistic Graphical Models Learning Records
Probabilistic Graphical Models Learning Records
2014/02/02
Probabilistic Graphical Models Assignment#1: IntroductiontoBayesianNetwork
- FactorProduct.m
- FactorMarginalization.m
- ObserveEvidence.m
- ComputeJointDistribution.m
- ComputeMarginal.m
涉及到Matlab的语法知识, 对课程本身的作业倒是比较容易. 这和第一次作业的目标是一致的:
The goal of this first assignment is for you to gain familarity with Bayesian networks and to understand how we might compute probability queries in these networks.
求联合概率分布时采用Factor Product的方法. 这把ComputeJointDistribution.m 和 FactorProduct.m 联系起来了.
求边缘概率分布时先求联合概率分布, 再做证据约减, 最后求边缘概率.
2014/02/03
ProbabilisticGraphicalModels Assignment#2: BayesNetsforGeneticInheritance
phenotypeGivenGenotypeMendelianFactor.m
根据孟德尔模型(mendelian model)计算每个factor的概率: P(phenotype | genotype)phenotypeGivenGenotypeFactor.m
非严格的孟德尔模型(Non-MendelianModel).the alphaList stores the probabilities that a person with that genotype will have the physical traitgenotypeGivenAlleleFreqsFactor.m
根据等位基因组合产生的每个基因类型的概率genotypeGivenParentsGenotypesFactor
已知父亲和母亲某个等位基因的分布, 求出下一代对应基因的概率分布.constructGeneticNetwork.m
phenotypeGivenCopiesFactor.m
constructDecoupledGeneticNetwork.m
constructSigmoidPhenotypeFactor