Probabilistic Graphical Models Learning Records

Probabilistic Graphical Models Learning Records

2014/02/02

Probabilistic Graphical Models Assignment#1: IntroductiontoBayesianNetwork

  • FactorProduct.m
  • FactorMarginalization.m
  • ObserveEvidence.m
  • ComputeJointDistribution.m
  • ComputeMarginal.m

涉及到Matlab的语法知识, 对课程本身的作业倒是比较容易. 这和第一次作业的目标是一致的:

The goal of this first assignment is for you to gain familarity with Bayesian networks and to understand how we might compute probability queries in these networks.

求联合概率分布时采用Factor Product的方法. 这把ComputeJointDistribution.m 和 FactorProduct.m 联系起来了.
求边缘概率分布时先求联合概率分布, 再做证据约减, 最后求边缘概率.


2014/02/03

ProbabilisticGraphicalModels Assignment#2: BayesNetsforGeneticInheritance

  • phenotypeGivenGenotypeMendelianFactor.m

    根据孟德尔模型(mendelian model)计算每个factor的概率: P(phenotype | genotype)
  • phenotypeGivenGenotypeFactor.m

    非严格的孟德尔模型(Non-MendelianModel).the alphaList stores the probabilities that a person with that genotype will have the physical trait
  • genotypeGivenAlleleFreqsFactor.m

    根据等位基因组合产生的每个基因类型的概率
  • genotypeGivenParentsGenotypesFactor

    已知父亲和母亲某个等位基因的分布, 求出下一代对应基因的概率分布.
  • constructGeneticNetwork.m

  • phenotypeGivenCopiesFactor.m

  • constructDecoupledGeneticNetwork.m

  • constructSigmoidPhenotypeFactor


Probabilistic%20Graphical%20Models%20Learning%20Records%20%20%0A%3D%3D%3D%20%20%20%20%0A@%5Bpublished%7Cprobabilistic%20graphical%20models%5D%0A%0A%23%23%232014/02/02%20%20%0A%23%23%23%23Probabilistic%20Graphical%20Models%20Assignment%231%3A%20IntroductiontoBayesianNetwork%20%20%0A%0A%0A-%20FactorProduct.m%20%20%20%0A-%20FactorMarginalization.m%20%20%0A-%20ObserveEvidence.m%20%20%0A-%20ComputeJointDistribution.m%20%20%0A-%20ComputeMarginal.m%20%20%0A%0A%u6D89%u53CA%u5230Matlab%u7684%u8BED%u6CD5%u77E5%u8BC6%2C%20%u5BF9%u8BFE%u7A0B%u672C%u8EAB%u7684%u4F5C%u4E1A%u5012%u662F%u6BD4%u8F83%u5BB9%u6613.%20%u8FD9%u548C%u7B2C%u4E00%u6B21%u4F5C%u4E1A%u7684%u76EE%u6807%u662F%u4E00%u81F4%u7684%3A%20%20%0A%3E%20The%20goal%20of%20this%20first%20assignment%20is%20for%20you%20to%20gain%20familarity%20with%20Bayesian%20networks%20and%20to%20understand%20how%20we%20might%20compute%20probability%20queries%20in%20these%20networks.%20%20%0A%20%20%0A%u6C42%u8054%u5408%u6982%u7387%u5206%u5E03%u65F6%u91C7%u7528Factor%20Product%u7684%u65B9%u6CD5.%20%u8FD9%u628AComputeJointDistribution.m%20%u548C%20FactorProduct.m%20%u8054%u7CFB%u8D77%u6765%u4E86.%20%20%0A%u6C42%u8FB9%u7F18%u6982%u7387%u5206%u5E03%u65F6%u5148%u6C42%u8054%u5408%u6982%u7387%u5206%u5E03%2C%20%u518D%u505A%u8BC1%u636E%u7EA6%u51CF%2C%20%u6700%u540E%u6C42%u8FB9%u7F18%u6982%u7387.%20%20%0A%20%20%0A%20%20%0A----%0A%23%23%232014/02/03%20%20%0A%23%23%23%23ProbabilisticGraphicalModels%20Assignment%232%3A%20BayesNetsforGeneticInheritance%20%20%0A-%20%23%23%23%23phenotypeGivenGenotypeMendelianFactor.m%20%20%20%0A%20%20%u6839%u636E%u5B5F%u5FB7%u5C14%u6A21%u578B%28mendelian%20model%29%u8BA1%u7B97%u6BCF%u4E2Afactor%u7684%u6982%u7387%3A%20P%28phenotype%20%7C%20genotype%29%20%20%0A-%20%23%23%23%23phenotypeGivenGenotypeFactor.m%20%20%20%0A%20%20%u975E%u4E25%u683C%u7684%u5B5F%u5FB7%u5C14%u6A21%u578B%28Non-MendelianModel%29.the%20alphaList%20stores%20the%20probabilities%20that%20a%20person%20with%20that%20genotype%20will%20have%20the%20physical%20trait%20%20%0A-%20%23%23%23%23genotypeGivenAlleleFreqsFactor.m%20%20%0A%20%20%u6839%u636E%u7B49%u4F4D%u57FA%u56E0%u7EC4%u5408%u4EA7%u751F%u7684%u6BCF%u4E2A%u57FA%u56E0%u7C7B%u578B%u7684%u6982%u7387%20%20%0A-%20%23%23%23%23genotypeGivenParentsGenotypesFactor%20%20%0A%20%20%u5DF2%u77E5%u7236%u4EB2%u548C%u6BCD%u4EB2%u67D0%u4E2A%u7B49%u4F4D%u57FA%u56E0%u7684%u5206%u5E03%2C%20%u6C42%u51FA%u4E0B%u4E00%u4EE3%u5BF9%u5E94%u57FA%u56E0%u7684%u6982%u7387%u5206%u5E03.%20%20%0A-%20%23%23%23%23%20constructGeneticNetwork.m%20%20%0A-%20%23%23%23%23%20phenotypeGivenCopiesFactor.m%20%20%0A-%20%23%23%23%23%20constructDecoupledGeneticNetwork.m%20%20%0A-%20%23%23%23%23%20constructSigmoidPhenotypeFactor%0A%20%20%0A-----%0A%0A


comments powered by Disqus