Content-based Recommendations

Content-based Recommendations

Introduction to RecSys

一 CBF包括以下三方面:

1. Item Representation:从items的contents中抽取特征,建立描述该item的特征向量.

 类似文档的Vector Space Model,以item的tags的TF-IDF作为item的特征.

2. Profile Learning:从用户对items的rating记录,建立描述用户偏好的特征.

根据用户的rating data,对用户rating过的全部item的各个特征分别求和并归一化,作为用户profile

3. Recommendation Prediction:通过1和2得到的用户profile与候选item的特征,为此用户推荐相关性最大的item list

求用户profile和item的cosine,取Top-N个items作为推荐的item list返回.

二 CBF 优缺点

参考自推荐阅读1

优点:

  1. 用户之间的独立性(User Independence):既然每个用户的profile都是依据他本身对item的喜好获得的,自然就与他人的行为无关。而CF刚好相反,CF需要利用很多其他人的数据。CB的这种用户独立性带来的一个显著好处是别人不管对item如何作弊(比如利用多个账号把某个产品的排名刷上去)都不会影响到自己。

  2. 好的可解释性(Transparency):如果需要向用户解释为什么推荐了这些产品给他,你只要告诉他这些产品有某某属性,这些属性跟你的品味很匹配等等。

  3. 新的item可以立刻得到推荐(New Item Problem):只要一个新item加进item库,它就马上可以被推荐,被推荐的机会和老的item是一致的。而CF对于新item就很无奈,只有当此新item被某些用户喜欢过(或打过分),它才可能被推荐给其他用户。所以,如果一个纯CF的推荐系统,新加进来的item就永远不会被推荐.

缺点:

  1. item的特征抽取一般很难(Limited Content Analysis):如果系统中的item是文档(如个性化阅读中),那么我们现在可以比较容易地使用信息检索里的方法来“比较精确地"抽取出item的特征。但很多情况下我们很难从item中抽取出准确刻画item的特征,比如电影推荐中item是电影,社会化网络推荐中item是人,这些item属性都不好抽。其实,几乎在所有实际情况中我们抽取的item特征都仅能代表item的一些方面,不可能代表item的所有方面。这样带来的一个问题就是可能从两个item抽取出来的特征完全相同,这种情况下CB就完全无法区分这两个item了。比如如果只能从电影里抽取出演员、导演,那么两部有相同演员和导演的电影对于CB来说就完全不可区分了。

  2. 无法挖掘出用户的潜在兴趣(Over-specialization):既然CB的推荐只依赖于用户过去对某些item的喜好,它产生的推荐也都会和用户过去喜欢的item相似。如果一个人以前只看与推荐有关的文章,那CB只会给他推荐更多与推荐相关的文章,它不会知道用户可能还喜欢数码。

  3. 无法为新用户产生推荐(New User Problem):新用户没有喜好历史,自然无法获得他的profile,所以也就无法为他产生推荐了。当然,这个问题CF也有。

三 本节课程材料

  1. Vedio
  2. Slides
  3. Code

推荐阅读:

  1. 基于内容的推荐 by BreezeDeus
    这篇文章介绍得更加全面,特别是Profile Learning部分.
  2. Pazzani M J, Billsus D. Content-based recommendation systems[M]//The adaptive web. Springer Berlin Heidelberg, 2007: 325-341.
  3. Coursera course: Introduction to Recommender Systems
Content-based%20Recommendations%0A%3D%3D%3D%3D%0AIntroduction%20to%20RecSys%0A---%0A@%5Brecsys%7Cpublished%5D%20%20%0A%23%23%u4E00%20CBF%u5305%u62EC%u4EE5%u4E0B%u4E09%u65B9%u9762%3A%0A%0A%23%23%23%231.%20Item%20Representation%3A%u4ECEitems%u7684contents%u4E2D%u62BD%u53D6%u7279%u5F81%2C%u5EFA%u7ACB%u63CF%u8FF0%u8BE5item%u7684%u7279%u5F81%u5411%u91CF.%0A%20%20%20%20%20%u7C7B%u4F3C%u6587%u6863%u7684Vector%20Space%20Model%2C%u4EE5item%u7684tags%u7684TF-IDF%u4F5C%u4E3Aitem%u7684%u7279%u5F81.%0A%0A%23%23%23%232.%20Profile%20Learning%3A%u4ECE%u7528%u6237%u5BF9items%u7684rating%u8BB0%u5F55%2C%u5EFA%u7ACB%u63CF%u8FF0%u7528%u6237%u504F%u597D%u7684%u7279%u5F81.%0A%20%20%20%20%u6839%u636E%u7528%u6237%u7684rating%20data%2C%u5BF9%u7528%u6237rating%u8FC7%u7684%u5168%u90E8item%u7684%u5404%u4E2A%u7279%u5F81%u5206%u522B%u6C42%u548C%u5E76%u5F52%u4E00%u5316%2C%u4F5C%u4E3A%u7528%u6237profile%0A%0A%23%23%23%233.%20Recommendation%20Prediction%3A%u901A%u8FC71%u548C2%u5F97%u5230%u7684%u7528%u6237profile%u4E0E%u5019%u9009item%u7684%u7279%u5F81%2C%u4E3A%u6B64%u7528%u6237%u63A8%u8350%u76F8%u5173%u6027%u6700%u5927%u7684item%20list%0A%20%20%20%20%u6C42%u7528%u6237profile%u548Citem%u7684cosine%2C%u53D6Top-N%u4E2Aitems%u4F5C%u4E3A%u63A8%u8350%u7684item%20list%u8FD4%u56DE.%0A%20%20%20%20%0A%23%23%20%u4E8C%20CBF%20%u4F18%u7F3A%u70B9%0A%u53C2%u8003%u81EA%u63A8%u8350%u9605%u8BFB1%0A%23%23%23%23%u4F18%u70B9%3A%0A1.%20%u7528%u6237%u4E4B%u95F4%u7684%u72EC%u7ACB%u6027%28User%20Independence%29%3A%u65E2%u7136%u6BCF%u4E2A%u7528%u6237%u7684profile%u90FD%u662F%u4F9D%u636E%u4ED6%u672C%u8EAB%u5BF9item%u7684%u559C%u597D%u83B7%u5F97%u7684%uFF0C%u81EA%u7136%u5C31%u4E0E%u4ED6%u4EBA%u7684%u884C%u4E3A%u65E0%u5173%u3002%u800CCF%u521A%u597D%u76F8%u53CD%uFF0CCF%u9700%u8981%u5229%u7528%u5F88%u591A%u5176%u4ED6%u4EBA%u7684%u6570%u636E%u3002CB%u7684%u8FD9%u79CD%u7528%u6237%u72EC%u7ACB%u6027%u5E26%u6765%u7684%u4E00%u4E2A%u663E%u8457%u597D%u5904%u662F%u522B%u4EBA%u4E0D%u7BA1%u5BF9item%u5982%u4F55%u4F5C%u5F0A%28%u6BD4%u5982%u5229%u7528%u591A%u4E2A%u8D26%u53F7%u628A%u67D0%u4E2A%u4EA7%u54C1%u7684%u6392%u540D%u5237%u4E0A%u53BB%29%u90FD%u4E0D%u4F1A%u5F71%u54CD%u5230%u81EA%u5DF1%u3002%0A%0A2.%20%u597D%u7684%u53EF%u89E3%u91CA%u6027%28Transparency%29%3A%u5982%u679C%u9700%u8981%u5411%u7528%u6237%u89E3%u91CA%u4E3A%u4EC0%u4E48%u63A8%u8350%u4E86%u8FD9%u4E9B%u4EA7%u54C1%u7ED9%u4ED6%uFF0C%u4F60%u53EA%u8981%u544A%u8BC9%u4ED6%u8FD9%u4E9B%u4EA7%u54C1%u6709%u67D0%u67D0%u5C5E%u6027%uFF0C%u8FD9%u4E9B%u5C5E%u6027%u8DDF%u4F60%u7684%u54C1%u5473%u5F88%u5339%u914D%u7B49%u7B49%u3002%0A%0A3.%20%u65B0%u7684item%u53EF%u4EE5%u7ACB%u523B%u5F97%u5230%u63A8%u8350%28New%20Item%20Problem%29%uFF1A%u53EA%u8981%u4E00%u4E2A%u65B0item%u52A0%u8FDBitem%u5E93%uFF0C%u5B83%u5C31%u9A6C%u4E0A%u53EF%u4EE5%u88AB%u63A8%u8350%uFF0C%u88AB%u63A8%u8350%u7684%u673A%u4F1A%u548C%u8001%u7684item%u662F%u4E00%u81F4%u7684%u3002%u800CCF%u5BF9%u4E8E%u65B0item%u5C31%u5F88%u65E0%u5948%uFF0C%u53EA%u6709%u5F53%u6B64%u65B0item%u88AB%u67D0%u4E9B%u7528%u6237%u559C%u6B22%u8FC7%28%u6216%u6253%u8FC7%u5206%29%uFF0C%u5B83%u624D%u53EF%u80FD%u88AB%u63A8%u8350%u7ED9%u5176%u4ED6%u7528%u6237%u3002%u6240%u4EE5%uFF0C%u5982%u679C%u4E00%u4E2A%u7EAFCF%u7684%u63A8%u8350%u7CFB%u7EDF%uFF0C%u65B0%u52A0%u8FDB%u6765%u7684item%u5C31%u6C38%u8FDC%u4E0D%u4F1A%u88AB%u63A8%u8350.%0A%0A%23%23%23%23%u7F3A%u70B9%uFF1A%0A%0A1.%20item%u7684%u7279%u5F81%u62BD%u53D6%u4E00%u822C%u5F88%u96BE%28Limited%20Content%20Analysis%29%uFF1A%u5982%u679C%u7CFB%u7EDF%u4E2D%u7684item%u662F%u6587%u6863%uFF08%u5982%u4E2A%u6027%u5316%u9605%u8BFB%u4E2D%uFF09%uFF0C%u90A3%u4E48%u6211%u4EEC%u73B0%u5728%u53EF%u4EE5%u6BD4%u8F83%u5BB9%u6613%u5730%u4F7F%u7528%u4FE1%u606F%u68C0%u7D22%u91CC%u7684%u65B9%u6CD5%u6765%u201C%u6BD4%u8F83%u7CBE%u786E%u5730%u201D%u62BD%u53D6%u51FAitem%u7684%u7279%u5F81%u3002%u4F46%u5F88%u591A%u60C5%u51B5%u4E0B%u6211%u4EEC%u5F88%u96BE%u4ECEitem%u4E2D%u62BD%u53D6%u51FA%u51C6%u786E%u523B%u753Bitem%u7684%u7279%u5F81%uFF0C%u6BD4%u5982%u7535%u5F71%u63A8%u8350%u4E2Ditem%u662F%u7535%u5F71%uFF0C%u793E%u4F1A%u5316%u7F51%u7EDC%u63A8%u8350%u4E2Ditem%u662F%u4EBA%uFF0C%u8FD9%u4E9Bitem%u5C5E%u6027%u90FD%u4E0D%u597D%u62BD%u3002%u5176%u5B9E%uFF0C%u51E0%u4E4E%u5728%u6240%u6709%u5B9E%u9645%u60C5%u51B5%u4E2D%u6211%u4EEC%u62BD%u53D6%u7684item%u7279%u5F81%u90FD%u4EC5%u80FD%u4EE3%u8868item%u7684%u4E00%u4E9B%u65B9%u9762%uFF0C%u4E0D%u53EF%u80FD%u4EE3%u8868item%u7684%u6240%u6709%u65B9%u9762%u3002%u8FD9%u6837%u5E26%u6765%u7684%u4E00%u4E2A%u95EE%u9898%u5C31%u662F%u53EF%u80FD%u4ECE%u4E24%u4E2Aitem%u62BD%u53D6%u51FA%u6765%u7684%u7279%u5F81%u5B8C%u5168%u76F8%u540C%uFF0C%u8FD9%u79CD%u60C5%u51B5%u4E0BCB%u5C31%u5B8C%u5168%u65E0%u6CD5%u533A%u5206%u8FD9%u4E24%u4E2Aitem%u4E86%u3002%u6BD4%u5982%u5982%u679C%u53EA%u80FD%u4ECE%u7535%u5F71%u91CC%u62BD%u53D6%u51FA%u6F14%u5458%u3001%u5BFC%u6F14%uFF0C%u90A3%u4E48%u4E24%u90E8%u6709%u76F8%u540C%u6F14%u5458%u548C%u5BFC%u6F14%u7684%u7535%u5F71%u5BF9%u4E8ECB%u6765%u8BF4%u5C31%u5B8C%u5168%u4E0D%u53EF%u533A%u5206%u4E86%u3002%0A%0A2.%20%u65E0%u6CD5%u6316%u6398%u51FA%u7528%u6237%u7684%u6F5C%u5728%u5174%u8DA3%28Over-specialization%29%uFF1A%u65E2%u7136CB%u7684%u63A8%u8350%u53EA%u4F9D%u8D56%u4E8E%u7528%u6237%u8FC7%u53BB%u5BF9%u67D0%u4E9Bitem%u7684%u559C%u597D%uFF0C%u5B83%u4EA7%u751F%u7684%u63A8%u8350%u4E5F%u90FD%u4F1A%u548C%u7528%u6237%u8FC7%u53BB%u559C%u6B22%u7684item%u76F8%u4F3C%u3002%u5982%u679C%u4E00%u4E2A%u4EBA%u4EE5%u524D%u53EA%u770B%u4E0E%u63A8%u8350%u6709%u5173%u7684%u6587%u7AE0%uFF0C%u90A3CB%u53EA%u4F1A%u7ED9%u4ED6%u63A8%u8350%u66F4%u591A%u4E0E%u63A8%u8350%u76F8%u5173%u7684%u6587%u7AE0%uFF0C%u5B83%u4E0D%u4F1A%u77E5%u9053%u7528%u6237%u53EF%u80FD%u8FD8%u559C%u6B22%u6570%u7801%u3002%0A%0A3.%20%u65E0%u6CD5%u4E3A%u65B0%u7528%u6237%u4EA7%u751F%u63A8%u8350%28New%20User%20Problem%29%uFF1A%u65B0%u7528%u6237%u6CA1%u6709%u559C%u597D%u5386%u53F2%uFF0C%u81EA%u7136%u65E0%u6CD5%u83B7%u5F97%u4ED6%u7684profile%uFF0C%u6240%u4EE5%u4E5F%u5C31%u65E0%u6CD5%u4E3A%u4ED6%u4EA7%u751F%u63A8%u8350%u4E86%u3002%u5F53%u7136%uFF0C%u8FD9%u4E2A%u95EE%u9898CF%u4E5F%u6709%u3002%0A%0A%23%23%u4E09%20%u672C%u8282%u8BFE%u7A0B%u6750%u6599%0A1.%20%5BVedio%5D%28http%3A//pan.baidu.com/s/1sj8QJ3v%29%0A2.%20%5BSlides%5D%28http%3A//pan.baidu.com/s/1naFJS%29%0A3.%20%5BCode%5D%28http%3A//pan.baidu.com/s/1kTwRJCF%29%0A%0A%u63A8%u8350%u9605%u8BFB%3A%0A1.%20%5B%u57FA%u4E8E%u5185%u5BB9%u7684%u63A8%u8350%20by%20BreezeDeus%5D%28http%3A//www.cnblogs.com/breezedeus/archive/2012/04/10/2440488.html%29%20%20%0A%20%20%20%20%u8FD9%u7BC7%u6587%u7AE0%u4ECB%u7ECD%u5F97%u66F4%u52A0%u5168%u9762%2C%u7279%u522B%u662FProfile%20Learning%u90E8%u5206.%0A2.%20%5BPazzani%20M%20J%2C%20Billsus%20D.%20Content-based%20recommendation%20systems%5BM%5D//The%20adaptive%20web.%20Springer%20Berlin%20Heidelberg%2C%202007%3A%20325-341.%5D%28http%3A//citeseerx.ist.psu.edu/viewdoc/download%3Fdoi%3D10.1.1.130.8327%26rep%3Drep1%26type%3Dpdf%29%0A3.%20Coursera%20course%3A%20%5BIntroduction%20to%20Recommender%20Systems%5D%28https%3A//www.coursera.org/course/recsys%29%0A%20%20%20%20%0A%0A%0A%0A


comments powered by Disqus