Chapter 7. Statistical Estimation Notes

Chapter 7. Statistical Estimation Notes

Justify these from different points of views and end up with the same conclusion.

1. 最大似然估计

求取参数向量x的最大似然估计问题可以描述如下:

minimize l(x)=logpx(y)subject to xC

1.1 附加了IID噪声的线性测量

yi=aTix+vi, i=1,...,m

vi,Rp. 从线性代数上,上式y是关于x的仿射函数; 从统计学,viyi(). 上式的似然函数为

px(y)=mi=1p(yiaTix)

对数-似然函数为:

l(x)=logpx(y)=mi=1logp(yiaTix)

1.2 噪声服从一些常见概率分布时的ML估计.

Justify these from different points of views and end up with the same conclusion.

  • Gauss 噪声 ·、vi0σ2,p(z)=(2πσ2)1ez2/2σ2
    l(x)=(m/2)log(2πσ2)12σ2||Axy||22
    AaT1,...,aTm.xMLxml=argminx||Axy||22.ML/l2.
  • Laplace噪声 viLaplacep(z)=(1/2a)e|z|/a(a>0),xMLx=argminx||Axy||1.l1.

2. 最大后验概率估计

最大后验概率估计问题可以看成最大似然估计的Bayes形式,此时,假设未知参数x服从某一项预先设定的概率分布. 将定x(待估计向量)和y(观察向量)是随机变量,其联合概率密度为p(x,y). 和统计估计的假设不同,在统计估计中,x是参数,而不是随机变量.

xmap=argmaxx(logpy(x,y)+logpx(x)

第一项和对数-似然函数本质上是一样的;第二项是根据先验概率密度对不大可能发生的x(即px(x)x)的惩罚项.


3. 非参数分布估计

$设随机变量X在有限集合\{a_1, ..., a_n\}\subseteq\mathbf{R}上取值.X的概率密度分布为p\in\mathbf{R}^n, \mathbf{prob}(X=a_k)=p_k. p\succeq 0 且\mathbf{1}^Tp = 1. \\ 反之,如果某一个概率密度分布p\in \mathbf{R}^n满足p \succeq 0 且 \mathbf{1}^Tp = 1, 令\mathbf{prob}(X=a_k) = p_k,则p定义了某一随机变量X的概率密度分布. \\ 因此, 概率单纯形$

{pRn|p0,1Tp=1}

与在{a1,...,an}X.

  • 概率及期望值的界
    给定概率分布的先验信息,如pP,可以计算某个函数期望值的上界和下界或者某一集合上概率的上下界.
    例如,为了确定函数Ef(X)的一个下界,其中X的概率密度分布满足先验信息pP,我们求解下列凸优化问题:
    minimize ni=1f(ai)pisubject to pP
  • 最大似然估计
    Nx1,...,xN.kiai,k1+...+KN=N

    l(p)=ni=1kilogpi

    上述问题是p的凹函数.最大似然估可以通过极大化,得到凸优化问题.

  • 最大熵

    minimize ni=1pilog(pi)subject to pP

    最大熵分布时满足先验信息的最确定的或者最随机的分布.

  • 最小KL散度
    在满足先验信息的条件下,为了找到和给定先验分布q具有最小Kullback-Leibler散度的概率分布p等价于求解以下凸优化问题:

    minimize ni=1pilog(pi/qi)subject to pP

    当给定的先验分布是均匀分布时,即q=(1/n)1,上述问题简化为最大熵问题.


4. 最优检测器设计及假设检验

4.1 假设检验

X{1,...,n}θ{1,...,m}.θmXPRn×m

pkj=prob(X=k|θ=j)

Pjθ.

XθXm?
θm成为假设,从m个假设中猜想哪个是正确的(即产生观察样本X的概率分布),这个问题成为假设检验.
参数θ的取值也可以不取{1,...,m},例如可以取$\theta\in\{\theta_1, ..., \theta_m\},其中\theta_i是参数值. 这些参数值可以是实数或者实向量,例如确定了第k个概率分布的均值和方差. 此时,参数估计误差的范数||\theta^{-} - \theta||是有意义的. $

{1,...n}(){1,...,m}()ψ.Xkθθ=\pshi(k). 直观的想法是做最大似然估计:

θ=ψml(k)=argmaxjpkj

对上述推广, 给定Xθθ{1,...,m}.X.TRm timesn,其元素为:

tik=prob(θ=i|X=k)

$如果我们得到观察值X=k,那么假设检验以概率t_{ik}给出估计值\theta^-=i. 给定观察值X=k,T的第k列,t_k给出了\theta^-的概率分布. \\ 如果T的每一列都是单位向量,那么\theta^-是X的观察值的一个确定性函数. $
进一步的,对由矩阵T决定的随机假设检验,定义假设检验概率矩阵D=TP:

Dij=(TP)ij=prob(θ=i|θ=j)

其中,pkj=prob(X=k|θ=j),tik=prob(θ=i|X=k)

则,Diji=jθ=i.m×mT.

Dijθ=iDij(ij)θ=jθ=i
D=I,:θ,θ=θ

D的对角元素排列成一向量,称为检测概率,Pd表示,即

Pdi=Dii=prob(θ=i|θ=i)

错误概率是上述概率的补,用Pe表示,即

Pei=1Dii=prob(θi|θ=i)

由于检测概率矩阵D的每一列和为1,错误概率又可以表示为Pei=ji(Dji)

4.2 假设检验设计

本节的假设检验设计问题的目标函数是D,同时也是T(即优化变量)的线性、仿射或者凸分片线性函数.
对正确检测出第j个假设的概率添加一个下界:

Pdi=DjjLj

对将θ=jθ=i的概率添加一个上界:

DijUij
  • 极小极大假设检验设计
    极小极大错误概率maxjPej作为优化目标,得到线性规划问题:
    minimize max jPejsubject to tk0,1Ttk=1,k=1,...,n
  • Bayes假设检验设计
    首先用一个先验分布qRm描述对参数的假设
    qi=prob(θ=i)
    则,假设检验的错误概率为qTPe,这是T的仿射函数.
    解如下线性规划问题,得到Bayes最优假设检验
    minimize qTPesubject to tk1,1Tt+k=1,k=1,...,n.
  • 由统计量定义假设检验的目标函数
    1.偏差
    θ=θi时,可以表述为下列线性函数
    Ei(θθ)=mi(θθ)Dji
    2.均方误差
    Ei(θθ)2=mi(θθ)2Dji
    3.. 平均绝对值误差
    Ei|θθ|=mi|θθ|Dji

5. Chebyshev界和Chernoff界

最近事情比较多,没空写了 -_-!


6. 实验设计

-_-!


参考文献

熵的社会学意义——阮一峰
Convex Optimization by Stephen Boyd and Lieven Vandenberghe
Convex Optimization Edx

Chapter%207.%20Statistical%20Estimation%20Notes%20%20%20%0A%3D%3D%3D%20%20%20%0A@%5Bconvex%20optimization%7Cmachine%20learning%7Cpublished%5D%20%20%0A%0A%3EJustify%20these%20from%20different%20points%20of%20views%20and%20end%20up%20with%20the%20same%20conclusion.%0A%0A%23%23%231.%20%u6700%u5927%u4F3C%u7136%u4F30%u8BA1%20%20%20%0A%u6C42%u53D6%u53C2%u6570%u5411%u91CFx%u7684%u6700%u5927%u4F3C%u7136%u4F30%u8BA1%u95EE%u9898%u53EF%u4EE5%u63CF%u8FF0%u5982%u4E0B%3A%0A%60%60%60mathjax%0A%5Ctext%7Bminimize%20%20%20%7D%20l%28x%29%20%3D%20log%20p_x%28y%29%20%5C%5C%0A%5Ctext%7Bsubject%20to%20%7D%20x%20%5Cin%20C%0A%60%60%60%20%20%0A%0A%23%23%23%231.1%20%u9644%u52A0%u4E86IID%u566A%u58F0%u7684%u7EBF%u6027%u6D4B%u91CF%20%20%0A%60%60%60mathjax%0Ay_i%20%3D%20a_i%5ETx%20+%20v_i%2C%20%5C%20i%20%3D%201%2C%20...%2C%20m%0A%60%60%60%20%20%0A%60%24%u5047%u8BBEv_i%u72EC%u7ACB%u540C%u5206%u5E03%2C%u5728%5Cmathbf%7BR%7D%u4E0A%u5177%u6709%u6982%u7387%u5BC6%u5EA6p.%24%60%20%u4ECE%u7EBF%u6027%u4EE3%u6570%u4E0A%uFF0C%u4E0A%u5F0Fy%u662F%u5173%u4E8Ex%u7684%u4EFF%u5C04%u51FD%u6570%3B%20%u4ECE%u7EDF%u8BA1%u5B66%uFF0C%60%24v_i%u662F%u968F%u673A%u53D8%u91CF%uFF0C%u89C2%u5BDF%u503Cy_i%u5206%u5E03%u7531%u53C2%u6570%u53D8%u91CF%28%u4E0D%u662F%u968F%u673A%u53D8%u91CF%29%u51B3%u5B9A%24%60.%20%u4E0A%u5F0F%u7684%u4F3C%u7136%u51FD%u6570%u4E3A%20%20%20%20%0A%60%60%60mathjax%0Ap_x%28y%29%20%3D%20%5Cprod_%7Bi%3D1%7D%5E%7Bm%7Dp%28y_i-a_i%5ETx%29%0A%60%60%60%20%20%0A%u5BF9%u6570-%u4F3C%u7136%u51FD%u6570%u4E3A%3A%0A%60%60%60mathjax%0Al%28x%29%20%3D%20logp_x%28y%29%20%3D%20%5Csum_%7Bi%3D1%7D%5Emlogp%28y_i%20-%20a_i%5ETx%29%0A%60%60%60%20%20%0A%23%23%23%231.2%20%u566A%u58F0%u670D%u4ECE%u4E00%u4E9B%u5E38%u89C1%u6982%u7387%u5206%u5E03%u65F6%u7684ML%u4F30%u8BA1.%20%20%0A%0A%3EJustify%20these%20from%20different%20points%20of%20views%20and%20end%20up%20with%20the%20same%20conclusion.%20%20%20%0A%0A-%20**Gauss%20%u566A%u58F0**%20%B7%u3001%60%24v_i%u662F%u5747%u503C%u4E3A0%uFF0C%u65B9%u5DEE%u4E3A%5Csigma%5E2%u7684%u9AD8%u65AF%u5206%u5E03%u65F6%2Cp%28z%29%20%3D%20%282%5Cpi%5Csigma%5E2%29%5E%7B-1%7De%5E%7B-z%5E2/2%5Csigma%5E2%7D%uFF0C%u6B64%u65F6%u5BF9%u6570-%u4F3C%u7136%u51FD%u6570%u4E3A%24%60%20%20%0A%60%60%60mathjax%0Al%28x%29%20%3D%20-%28m/2%29log%282%5Cpi%5Csigma%5E2%29%20-%20%5Cfrac%7B1%7D%7B2%5Csigma%5E2%7D%7C%7CAx%20-%20y%7C%7C_2%5E2%0A%60%60%60%20%20%0A%60%24%u5176%u4E2D%uFF0C%u77E9%u9635A%u7684%u884C%u5411%u91CF%u4E3Aa_1%5ET%2C%20...%2C%20a_m%5ET.%20x%u7684ML%u4F30%u8BA1%u4E3Ax_%7Bml%7D%20%3D%20%5Ctext%7Bargmin%7D_x%7C%7CAx%20-%20y%7C%7C%5E2_2.%20%u8FD9%u5C31%u4ECEML%u7684%u89D2%u5EA6%u89E3%u91CA%u4E86%u6700%u5C0F%u4E8C%u4E58%u903C%u8FD1%u95EE%u9898/l_2%u8303%u6570%u903C%u8FD1%u95EE%u9898.%24%60%20%20%20%0A-%20**Laplace%u566A%u58F0**%20%60%24v_i%u670D%u4ECELaplace%u5206%u5E03%u65F6%uFF0Cp%28z%29%20%3D%20%281/2a%29e%5E%7B-%7Cz%7C/a%7D%28a%20%3E%200%29%2C%20x%u7684ML%u4F30%u8BA1%u4E3Ax%20%3D%20%5Ctext%7Bargmin%7D_x%7C%7CAx%20-%20y%7C%7C_1.%20%u4E5F%u5373l_1%u8303%u6570%u903C%u8FD1%u95EE%u9898.%24%60%0A---%0A%23%23%232.%20%u6700%u5927%u540E%u9A8C%u6982%u7387%u4F30%u8BA1%20%20%20%20%20%0A%u6700%u5927%u540E%u9A8C%u6982%u7387%u4F30%u8BA1%u95EE%u9898%u53EF%u4EE5%u770B%u6210%u6700%u5927%u4F3C%u7136%u4F30%u8BA1%u7684Bayes%u5F62%u5F0F%2C%u6B64%u65F6%2C%u5047%u8BBE%u672A%u77E5%u53C2%u6570x%u670D%u4ECE%u67D0%u4E00%u9879%u9884%u5148%u8BBE%u5B9A%u7684%u6982%u7387%u5206%u5E03.%20%u5C06%u5B9Ax%28%u5F85%u4F30%u8BA1%u5411%u91CF%29%u548Cy%28%u89C2%u5BDF%u5411%u91CF%29%u662F***%u968F%u673A%u53D8%u91CF***%uFF0C%u5176%u8054%u5408%u6982%u7387%u5BC6%u5EA6%u4E3Ap%28x%2Cy%29.%20%u548C%u7EDF%u8BA1%u4F30%u8BA1%u7684%u5047%u8BBE%u4E0D%u540C%uFF0C%u5728%u7EDF%u8BA1%u4F30%u8BA1%u4E2D%uFF0Cx%u662F%u53C2%u6570%uFF0C%u800C%u4E0D%u662F%u968F%u673A%u53D8%u91CF.%20%20%20%20%0A%60%60%60mathjax%0Ax_%7Bmap%7D%20%3D%20%5Ctext%7Bargmax%7D_x%28logp_y%28x%2Cy%29+logp_x%28x%29%0A%60%60%60%20%20%0A%u7B2C%u4E00%u9879%u548C%u5BF9%u6570-%u4F3C%u7136%u51FD%u6570%u672C%u8D28%u4E0A%u662F%u4E00%u6837%u7684%3B%u7B2C%u4E8C%u9879%u662F%u6839%u636E%u5148%u9A8C%u6982%u7387%u5BC6%u5EA6%u5BF9%u4E0D%u5927%u53EF%u80FD%u53D1%u751F%u7684x%28%u5373%60%24p_x%28x%29%u8F83%u5C0F%u7684x%24%60%29%u7684%u60E9%u7F5A%u9879.%20%20%20%20%0A%0A----%0A%23%23%233.%20%u975E%u53C2%u6570%u5206%u5E03%u4F30%u8BA1%20%20%0A%60%24%u8BBE%u968F%u673A%u53D8%u91CFX%u5728%u6709%u9650%u96C6%u5408%5C%7Ba_1%2C%20...%2C%20a_n%5C%7D%5Csubseteq%5Cmathbf%7BR%7D%u4E0A%u53D6%u503C.X%u7684%u6982%u7387%u5BC6%u5EA6%u5206%u5E03%u4E3Ap%5Cin%5Cmathbf%7BR%7D%5En%2C%20%5Cmathbf%7Bprob%7D%28X%3Da_k%29%3Dp_k.%20p%5Csucceq%200%20%u4E14%5Cmathbf%7B1%7D%5ETp%20%3D%201.%20%5C%5C%20%u53CD%u4E4B%uFF0C%u5982%u679C%u67D0%u4E00%u4E2A%u6982%u7387%u5BC6%u5EA6%u5206%u5E03p%5Cin%20%5Cmathbf%7BR%7D%5En%u6EE1%u8DB3p%20%5Csucceq%200%20%u4E14%20%5Cmathbf%7B1%7D%5ETp%20%3D%201%2C%20%u4EE4%5Cmathbf%7Bprob%7D%28X%3Da_k%29%20%3D%20p_k%2C%u5219p%u5B9A%u4E49%u4E86%u67D0%u4E00%u968F%u673A%u53D8%u91CFX%u7684%u6982%u7387%u5BC6%u5EA6%u5206%u5E03.%20%5C%5C%0A%u56E0%u6B64%2C%20%u6982%u7387%u5355%u7EAF%u5F62%24%60%20%20%0A%60%60%60mathjax%0A%5C%7Bp%5Cin%20%5Cmathbf%7BR%7D%5En%20%7C%20p%20%5Csucceq%200%2C%20%5Cmathbf%7B1%7D%5ETp%20%3D%201%5C%7D%0A%60%60%60%20%20%0A%u4E0E%u5728%60%24%5C%7Ba_1%2C%20...%2C%20a_n%5C%7D%u4E2D%u53D6%u503C%u7684%u968F%u673A%u53D8%u91CFX%u7684%u6240%u6709%u53EF%u80FD%u7684%u6982%u7387%u5BC6%u5EA6%u5206%u5E03%u662F%u610F%u4E49%u5BF9%u5E94%u7684%u5173%u7CFB.%20%24%60%20%20%0A-%20%u6982%u7387%u53CA%u671F%u671B%u503C%u7684%u754C%20%20%0A%u7ED9%u5B9A%u6982%u7387%u5206%u5E03%u7684%u5148%u9A8C%u4FE1%u606F%2C%u5982%60%24p%5Cin%20%5Cmathcal%7BP%7D%24%60%2C%u53EF%u4EE5%u8BA1%u7B97%u67D0%u4E2A%u51FD%u6570%u671F%u671B%u503C%u7684%u4E0A%u754C%u548C%u4E0B%u754C%u6216%u8005%u67D0%u4E00%u96C6%u5408%u4E0A%u6982%u7387%u7684%u4E0A%u4E0B%u754C.%20%20%20%0A%u4F8B%u5982%2C%u4E3A%u4E86%u786E%u5B9A%u51FD%u6570%60%24%5Cmathrm%7BE%7Df%28X%29%24%60%u7684%u4E00%u4E2A%u4E0B%u754C%2C%u5176%u4E2DX%u7684%u6982%u7387%u5BC6%u5EA6%u5206%u5E03%u6EE1%u8DB3%u5148%u9A8C%u4FE1%u606F%60%24p%5Cin%20%5Cmathcal%7BP%7D%24%60%2C%u6211%u4EEC%u6C42%u89E3%u4E0B%u5217%u51F8%u4F18%u5316%u95EE%u9898%3A%20%20%0A%60%60%60mathjax%0A%5Ctext%7Bminimize%20%20%20%7D%20%5Csum_%7Bi%3D1%7D%5En%20f%28a_i%29p_i%20%5C%5C%0A%5Ctext%7Bsubject%20to%20%7D%20p%20%5Cin%20%5Cmathcal%7BP%7D%0A%60%60%60%20%20%0A-%20%u6700%u5927%u4F3C%u7136%u4F30%u8BA1%20%20%0A%60%24%u5047%u8BBE%u6709N%u7EC4%u670D%u4ECE%u72EC%u7ACB%u540C%u5206%u5E03%u7684%u91C7%u6837%u70B9x_1%2C%20...%2C%20x_N.%20k_i%u8868%u793A%u8FD9%u4E9B%u91C7%u6837%u70B9%u53D6%u503C%u4E3Aa_i%u7684%u6B21%u6570%2C%20k_1%20+%20...%20+%20K_N%20%3D%20N%24%60%0A%60%60%60mathjax%0Al%28p%29%20%3D%20%5Csum_%7Bi%3D1%7D%5Enk_i%5Ctext%7Blog%7Dp_i%0A%60%60%60%20%20%0A%u4E0A%u8FF0%u95EE%u9898%u662Fp%u7684%u51F9%u51FD%u6570.%u6700%u5927%u4F3C%u7136%u4F30%u53EF%u4EE5%u901A%u8FC7%u6781%u5927%u5316%2C%u5F97%u5230%u51F8%u4F18%u5316%u95EE%u9898.%20%20%0A%0A-%20%u6700%u5927%u71B5%20%0A%60%60%60mathjax%0A%5Ctext%7Bminimize%20%20%20%7D%5Csum_%7Bi%3D1%7D%5Enp_i%5Ctext%7Blog%7D%28p_i%29%20%20%5C%5C%0A%5Ctext%7Bsubject%20to%20%7D%20p%20%5Cin%20%5Cmathcal%7BP%7D%0A%60%60%60%20%20%0A%u6700%u5927%u71B5%u5206%u5E03%u65F6%u6EE1%u8DB3%u5148%u9A8C%u4FE1%u606F%u7684%u6700%u786E%u5B9A%u7684%u6216%u8005%u6700%u968F%u673A%u7684%u5206%u5E03.%20%20%0A%0A-%20%u6700%u5C0FKL%u6563%u5EA6%20%20%20%0A%u5728%u6EE1%u8DB3%u5148%u9A8C%u4FE1%u606F%u7684%u6761%u4EF6%u4E0B%2C%u4E3A%u4E86%u627E%u5230%u548C%u7ED9%u5B9A%u5148%u9A8C%u5206%u5E03q%u5177%u6709%u6700%u5C0FKullback-Leibler%u6563%u5EA6%u7684%u6982%u7387%u5206%u5E03p%u7B49%u4EF7%u4E8E%u6C42%u89E3%u4EE5%u4E0B%u51F8%u4F18%u5316%u95EE%u9898%3A%20%20%0A%60%60%60mathjax%0A%5Ctext%7Bminimize%20%20%20%7D%5Csum_%7Bi%3D1%7D%5Enp_i%5Ctext%7Blog%7D%28p_i/q_i%29%20%20%5C%5C%0A%5Ctext%7Bsubject%20to%20%7D%20p%20%5Cin%20%5Cmathcal%7BP%7D%0A%60%60%60%20%20%0A%u5F53%u7ED9%u5B9A%u7684%u5148%u9A8C%u5206%u5E03%u662F%u5747%u5300%u5206%u5E03%u65F6%2C%u5373%60%24q%20%3D%20%281/n%29%5Cmathbf%7B1%7D%24%60%2C%u4E0A%u8FF0%u95EE%u9898%u7B80%u5316%u4E3A%u6700%u5927%u71B5%u95EE%u9898.%20%20%20%0A%0A---%20%20%20%0A%23%23%234.%20%u6700%u4F18%u68C0%u6D4B%u5668%u8BBE%u8BA1%u53CA%u5047%u8BBE%u68C0%u9A8C%20%20%0A%23%23%23%234.1%20%u5047%u8BBE%u68C0%u9A8C%20%20%0A%60%24%u5047%u8BBEX%u662F%u968F%u673A%u53D8%u91CF%uFF0C%u5728%5C%7B1%2C%20...%2C%20n%5C%7D%u4E2D%u53D6%u503C%uFF0C%u5176%u6982%u7387%u5BC6%u5EA6%u5206%u5E03%u548C%u53C2%u6570%5Ctheta%5Cin%5C%7B1%2C%20...%2C%20m%5C%7D%u7684%u53D6%u503C%u6709%u5173.%20%5C%5C%20%u5BF9%5Ctheta%u7684m%u4E2A%u53D6%u503C%uFF0CX%u7684%u6982%u7387%u5206%u5E03%u7531%u77E9%u9635P%5Cin%20%5Cmathbf%7BR%7D%5E%7Bn%5Ctimes%20m%7D%u8868%u5F81%uFF0C%u5176%u5143%u7D20%u4E3A%24%60%20%20%20%0A%60%60%60mathjax%0Ap_%7Bkj%7D%20%3D%20%5Cmathbf%7Bprob%7D%28X%3Dk%20%7C%20%5Ctheta%3Dj%29%0A%60%60%60%20%20%0A%60%24%u800C%u77E9%u9635P%u7684%u7B2Cj%u5217%u5BF9%u5E94%u53C2%u6570%u6570%u503C%5Ctheta%u7684%u6982%u7387%u5206%u5E03.%24%60%20%20%0A%0A%60%24%u57FA%u4E8E%u89C2%u5BDF%u6837%u672CX%u4F30%u8BA1%5Ctheta%u7684%u95EE%u9898%uFF0C%u5373%u6837%u672CX%u6765%u81EA%u4E8Em%u79CD%u53EF%u80FD%u7684%u6982%u7387%u5206%u5E03%uFF0C%u6211%u4EEC%u9700%u8981%u786E%u5B9A%u662F%u54EA%u4E2A%3F%24%60%20%20%0A%60%24%5Ctheta%u7684m%u4E2A%u53D6%u503C%24%60%u6210%u4E3A**%u5047%u8BBE**%2C%u4ECEm%u4E2A%u5047%u8BBE%u4E2D%u731C%u60F3%u54EA%u4E2A%u662F%u6B63%u786E%u7684%uFF08%u5373%u4EA7%u751F%u89C2%u5BDF%u6837%u672CX%u7684%u6982%u7387%u5206%u5E03%uFF09%uFF0C%u8FD9%u4E2A%u95EE%u9898%u6210%u4E3A**%u5047%u8BBE%u68C0%u9A8C**.%20%20%0A%u53C2%u6570%60%24%5Ctheta%24%60%u7684%u53D6%u503C%u4E5F%u53EF%u4EE5%u4E0D%u53D6%60%24%5C%7B1%2C%20...%2Cm%5C%7D%24%60%uFF0C%u4F8B%u5982%u53EF%u4EE5%u53D6%60%24%5Ctheta%5Cin%5C%7B%5Ctheta_1%2C%20...%2C%20%5Ctheta_m%5C%7D%2C%u5176%u4E2D%5Ctheta_i%u662F%u53C2%u6570%u503C.%20%u8FD9%u4E9B%u53C2%u6570%u503C%u53EF%u4EE5%u662F%u5B9E%u6570%u6216%u8005%u5B9E%u5411%u91CF%uFF0C%u4F8B%u5982%u786E%u5B9A%u4E86%u7B2Ck%u4E2A%u6982%u7387%u5206%u5E03%u7684%u5747%u503C%u548C%u65B9%u5DEE.%20%20%0A%u6B64%u65F6%uFF0C%u53C2%u6570%u4F30%u8BA1%u8BEF%u5DEE%u7684%u8303%u6570%7C%7C%5Ctheta%5E%7B-%7D%20-%20%5Ctheta%7C%7C%u662F%u6709%u610F%u4E49%u7684.%20%24%60%20%20%0A%20%20%0A%60%24%u5047%u8BBE%u68C0%u9A8C%u662F%u4ECE%5C%7B1%2C%20...%20n%5C%7D%28%u53EF%u80FD%u7684%u89C2%u5BDF%u6837%u672C%u96C6%u5408%29%u5230%5C%7B1%2C%20...%2C%20m%5C%7D%28%u5047%u8BBE%u7684%u96C6%u5408%29%u7684%u51FD%u6570%5Cpsi.%20%u5982%u679CX%u7684%u89C2%u5BDF%u503C%u4E3Ak%uFF0C%u90A3%u4E48%5Ctheta%u7684%u731C%u60F3%u503C%u4E3A%5Ctheta%5E%7B-%7D%3D%5Cpshi%28k%29.%24%60%20%u76F4%u89C2%u7684%u60F3%u6CD5%u662F%u505A**%u6700%u5927%u4F3C%u7136%u4F30%u8BA1**%3A%20%20%0A%60%60%60mathjax%0A%5Ctheta%5E%7B-%7D%20%3D%20%5Cpsi_%7Bml%7D%28k%29%20%3D%20%5Ctext%7Bargmax%7D_%7Bj%7Dp_%7Bkj%7D%0A%60%60%60%20%20%0A%u5BF9%u4E0A%u8FF0%u63A8%u5E7F%2C%20%u7ED9%u5B9A%60%24X%u7684%u89C2%u5BDF%u503C%uFF0C%5Ctheta%u7684%u4F30%u8BA1%u503C%5Ctheta%5E%7B-%7D%5Cin%5C%7B1%2C%20...%2C%20m%5C%7D%u662F%u968F%u673A%u7684.%u5176%u5206%u5E03%u53D6%u51B3%u4E3AX%u7684%u89C2%u5BDF%u503C.%20%u6B64%u65F6%uFF0C%u53EF%u4EE5%u5B9A%u4E49%u4E00%u4E2A%u77E9%u9635T%5Cin%20%5Cmathbf%7BR%7D%5E%7Bm%20%5C%20times%20n%7D%24%60%2C%u5176%u5143%u7D20%u4E3A%3A%20%20%0A%60%60%60mathjax%0At_%7Bik%7D%20%3D%20%5Cmathbf%7Bprob%7D%28%5Ctheta%5E%7B-%7D%3Di%7CX%3Dk%29%0A%60%60%60%20%20%20%0A%60%24%u5982%u679C%u6211%u4EEC%u5F97%u5230%u89C2%u5BDF%u503CX%3Dk%2C%u90A3%u4E48%u5047%u8BBE%u68C0%u9A8C%u4EE5%u6982%u7387t_%7Bik%7D%u7ED9%u51FA%u4F30%u8BA1%u503C%5Ctheta%5E-%3Di.%20%u7ED9%u5B9A%u89C2%u5BDF%u503CX%3Dk%uFF0CT%u7684%u7B2Ck%u5217%uFF0Ct_k%u7ED9%u51FA%u4E86%5Ctheta%5E-%u7684%u6982%u7387%u5206%u5E03.%20%5C%5C%20%0A%u5982%u679CT%u7684%u6BCF%u4E00%u5217%u90FD%u662F%u5355%u4F4D%u5411%u91CF%uFF0C%u90A3%u4E48%5Ctheta%5E-%u662FX%u7684%u89C2%u5BDF%u503C%u7684%u4E00%u4E2A%u786E%u5B9A%u6027%u51FD%u6570.%0A%24%60%20%20%20%0A%u8FDB%u4E00%u6B65%u7684%uFF0C%u5BF9%u7531%u77E9%u9635T%u51B3%u5B9A%u7684%u968F%u673A%u5047%u8BBE%u68C0%u9A8C%uFF0C%u5B9A%u4E49**%u5047%u8BBE%u68C0%u9A8C%u6982%u7387%u77E9%u9635**%60%24D%20%3D%20TP%24%60%3A%20%20%0A%60%60%60mathjax%0AD_%7Bij%7D%20%3D%20%28TP%29_%7Bij%7D%20%3D%20%5Cmathbf%7Bprob%7D%28%5Ctheta%5E-%3Di%7C%5Ctheta%3Dj%29%0A%60%60%60%20%20%0A%u5176%u4E2D%2C%60%24p_%7Bkj%7D%20%3D%20%5Cmathbf%7Bprob%7D%28X%3Dk%20%7C%20%5Ctheta%3Dj%29%2Ct_%7Bik%7D%20%3D%20%5Cmathbf%7Bprob%7D%28%5Ctheta%5E%7B-%7D%3Di%7CX%3Dk%29%24%60%20%20%0A%0A%u5219%uFF0C%60%24D_%7Bij%7D%u8868%u793A%u5F53i%3Dj%u65F6%uFF0C%5Ctheta%5E-%3Di%u7684%u6982%u7387.%20m%20%5Ctimes%20m%20%u6982%u7387%u77E9%u9635%u5B9A%u4E49%u4E86%u7531%u77E9%u9635T%u5B9A%u4E49%u7684%u968F%u673A%u5047%u8BBE%u68C0%u9A8C%u7684%u6027%u80FD.%24%60%20%20%20%20%20%20%20%0A%0A%60%24%u5BF9%u89D2%u5143%u7D20D_%7Bij%7D%u8868%u793A%u6B63%u786E%u5730%u68C0%u9A8C%u51FA%5Ctheta%20%3D%20i%u7684%u6982%u7387%uFF0C%u5BF9%u89D2%u5143%u7D20D_%7Bij%7D%28i%5Cneq%20j%29%u662F%5Ctheta%20%3D%20j%20%u5374%u8BEF%u5224%u4E3A%5Ctheta%20%3D%20i%u7684%u6982%u7387%24%60%20%20%0A%60%24%u5982%u679CD%3DI%2C%u5219%u5047%u8BBE%u662F%u7406%u60F3%u7684%3A%20%u65E0%u8BBA%u53C2%u6570%5Ctheta%u5982%u4F55%uFF0C%u731C%u60F3%u90FD%u662F%u6B63%u786E%u7684%2C%5Ctheta%5E-%20%3D%20%5Ctheta%24%60%20%20%0A%0AD%u7684%u5BF9%u89D2%u5143%u7D20%u6392%u5217%u6210%u4E00%u5411%u91CF%uFF0C%u79F0%u4E3A**%u68C0%u6D4B%u6982%u7387**%2C%60%24%u7528P%5Ed%24%60%u8868%u793A%uFF0C%u5373%0A%60%60%60mathjax%0AP%5Ed_i%20%3D%20D_%7Bii%7D%20%3D%20%5Cmathbf%7Bprob%7D%28%5Ctheta%5E-%3Di%7C%5Ctheta%20%3D%20i%29%20%20%0A%60%60%60%20%20%0A**%u9519%u8BEF%u6982%u7387**%u662F%u4E0A%u8FF0%u6982%u7387%u7684%u8865%uFF0C%u7528%60%24P%5Ee%24%60%u8868%u793A%uFF0C%u5373%0A%60%60%60mathjax%0AP%5Ee_i%20%3D%201%20-%20D_%7Bii%7D%20%3D%20%5Cmathbf%7Bprob%7D*%28%5Ctheta%5E-%5Cneq%20i%20%7C%20%5Ctheta%20%3D%20i%29%0A%60%60%60%20%20%0A%u7531%u4E8E%u68C0%u6D4B%u6982%u7387%u77E9%u9635D%u7684%u6BCF%u4E00%u5217%u548C%u4E3A1%uFF0C%u9519%u8BEF%u6982%u7387%u53C8%u53EF%u4EE5%u8868%u793A%u4E3A%60%24P%5Ee_i%20%3D%20%5Csum_%7Bj%20%5Cneq%20i%7D%28D_%7Bji%7D%29%24%60%20%20%0A%23%23%23%234.2%20%u5047%u8BBE%u68C0%u9A8C%u8BBE%u8BA1%20%20%0A%u672C%u8282%u7684%u5047%u8BBE%u68C0%u9A8C%u8BBE%u8BA1%u95EE%u9898%u7684%u76EE%u6807%u51FD%u6570%u662FD%uFF0C%u540C%u65F6%u4E5F%u662FT%uFF08%u5373%u4F18%u5316%u53D8%u91CF%uFF09%u7684%u7EBF%u6027%u3001%u4EFF%u5C04%u6216%u8005%u51F8%u5206%u7247%u7EBF%u6027%u51FD%u6570.%20%20%20%0A%u5BF9%u6B63%u786E%u68C0%u6D4B%u51FA%u7B2Cj%u4E2A%u5047%u8BBE%u7684%u6982%u7387%u6DFB%u52A0%u4E00%u4E2A%u4E0B%u754C%uFF1A%20%20%0A%60%60%60mathjax%0AP_i%5Ed%20%3D%20D_%7Bjj%7D%20%5Cge%20L_j%20%20%0A%60%60%60%0A%u5BF9%u5C06%60%24%5Ctheta%20%3D%20j%u8BEF%u5224%u4E3A%5Ctheta%20%3D%20i%24%60%u7684%u6982%u7387%u6DFB%u52A0%u4E00%u4E2A%u4E0A%u754C%3A%0A%60%60%60mathjax%0AD_%7Bij%7D%20%5Cle%20U_%7Bij%7D%0A%60%60%60%20%20%0A-%20%u6781%u5C0F%u6781%u5927%u5047%u8BBE%u68C0%u9A8C%u8BBE%u8BA1%20%20%20%0A%u6781%u5C0F%u6781%u5927%u9519%u8BEF%u6982%u7387%60%24%5Cmax_j%20P%5Ee_j%24%60%u4F5C%u4E3A%u4F18%u5316%u76EE%u6807%uFF0C%u5F97%u5230%u7EBF%u6027%u89C4%u5212%u95EE%u9898%uFF1A%0A%60%60%60mathjax%0A%20%20%20%20%5Ctext%7Bminimize%20max%20%7D_j%20P%5Ee_j%20%20%5C%5C%20%0A%20%20%20%20%5Ctext%7Bsubject%20to%20%7D%20t_k%20%5Csucceq%200%2C%20%5Cmathbf%7B1%7D%5ETt_k%20%3D%201%2C%20k%20%3D%201%2C%20...%2C%20n%0A%60%60%60%20%20%0A-%20Bayes%u5047%u8BBE%u68C0%u9A8C%u8BBE%u8BA1%20%20%0A%u9996%u5148%u7528%u4E00%u4E2A%u5148%u9A8C%u5206%u5E03%60%24q%20%5Cin%20%5Cmathbf%7BR%7D%5Em%24%60%u63CF%u8FF0%u5BF9%u53C2%u6570%u7684%u5047%u8BBE%20%20%0A%60%60%60mathjax%0Aq_i%20%3D%20%5Cmathbf%7Bprob%7D%28%5Ctheta%20%3D%20i%29%0A%60%60%60%20%20%0A%u5219%uFF0C%u5047%u8BBE%u68C0%u9A8C%u7684%u9519%u8BEF%u6982%u7387%u4E3A%60%24q%5ETP%5Ee%24%60%2C%u8FD9%u662FT%u7684%u4EFF%u5C04%u51FD%u6570.%20%20%0A%u89E3%u5982%u4E0B%u7EBF%u6027%u89C4%u5212%u95EE%u9898%uFF0C%u5F97%u5230Bayes%u6700%u4F18%u5047%u8BBE%u68C0%u9A8C%20%20%20%0A%60%60%60mathjax%0A%5Ctext%7Bminimize%20%7D%20q%5ETP%5Ee%20%20%5C%5C%20%0A%5Ctext%7Bsubject%20to%20%7D%20t_k%20%5Csucceq%201%2C%20%5Cmathbf%7B1%7D%5ETt+k%20%3D%201%2C%20k%20%3D%201%2C%20...%2C%20n.%0A%60%60%60%20%20%20%0A-%20%u7531%u7EDF%u8BA1%u91CF%u5B9A%u4E49%u5047%u8BBE%u68C0%u9A8C%u7684%u76EE%u6807%u51FD%u6570%20%20%20%0A1.%u504F%u5DEE%20%20%0A%u5F53%60%24%5Ctheta%20%3D%20%5Ctheta_i%24%60%u65F6%uFF0C%u53EF%u4EE5%u8868%u8FF0%u4E3A%u4E0B%u5217%u7EBF%u6027%u51FD%u6570%20%20%0A%60%60%60mathjax%0A%5Cmathbf%7BE%7D_i%28%5Ctheta%5E--%5Ctheta%29%20%3D%20%5Csum_i%5Em%28%5Ctheta%5E--%5Ctheta%29D_ji%0A%60%60%60%20%20%0A2.%u5747%u65B9%u8BEF%u5DEE%20%20%0A%60%60%60mathjax%0A%5Cmathbf%7BE%7D_i%28%5Ctheta%5E--%5Ctheta%29%5E2%20%3D%20%5Csum_i%5Em%28%5Ctheta%5E--%5Ctheta%29%5E2D_ji%0A%60%60%60%0A3..%20%u5E73%u5747%u7EDD%u5BF9%u503C%u8BEF%u5DEE%20%0A%60%60%60mathjax%0A%5Cmathbf%7BE%7D_i%7C%5Ctheta%5E--%5Ctheta%7C%20%3D%20%5Csum_i%5Em%7C%5Ctheta%5E--%5Ctheta%7CD_ji%0A%60%60%60%20%20%0A---%0A%23%23%235.%20Chebyshev%u754C%u548CChernoff%u754C%20%20%20%0A%u6700%u8FD1%u4E8B%u60C5%u6BD4%u8F83%u591A%uFF0C%u6CA1%u7A7A%u5199%u4E86%20-_-%21%20%20%20%0A%0A----%0A%23%23%236.%20%u5B9E%u9A8C%u8BBE%u8BA1%20%20%0A-_-%21%20%20%20%0A%0A----%0A%23%23%23%u53C2%u8003%u6587%u732E%20%20%20%20%0A%5B%u71B5%u7684%u793E%u4F1A%u5B66%u610F%u4E49%u2014%u2014%u962E%u4E00%u5CF0%5D%28http%3A//www.ruanyifeng.com/blog/2013/04/entropy.html%29%20%20%0A%5BConvex%20Optimization%20by%20Stephen%20Boyd%20and%20Lieven%20Vandenberghe%5D%28http%3A//book.douban.com/subject/1888111/%29%20%20%0A%5BConvex%20Optimization%20Edx%5D%28https%3A//class.stanford.edu/courses/Engineering/CVX101/Winter2014/info%29%20%20%20%0A%0A%0A%0A%0A


comments powered by Disqus