Chapter 6. Norm Approximation Notes
1. 范数逼近问题
最简单的范数逼近问题具有如下形式:
其中A∈Rm×和b∈Rm是问题的数据,x∈Rn是参数,∥.∥是Rm上的一种范数,如1范数,l1,2范数,l2和最大范数\nsi等
上述范数逼近问题是一个可解的凸优化问题/或者转化为对偶问题之后,对偶问题是凸优化问题,且对偶问题与原问题的对偶间隙为0.例如l1不是凸优化问题,但是其对偶问题是凸优化问题.
1.1 范数逼近问题的解释
1.2 范数逼近问题的例子
- 加权范数逼近问题
对标准范数逼近问题拓展:
其中W∈Rm×m,称之为权矩阵,通常是对角的. 这时,权矩阵给出了对残差向量r=Ax−b的各分量之间不同的相对重视程度.
∥Wz∥通常用符号∥z∥W表示.
最小二乘逼近问题
当标准逼近问题的范数采用Euclid或者l2−范数时,问题具体化为最小二乘逼近问题:
minimize∥Ax−b∥=r21+r22+...+r2m
该目标函数为残差的平方和. 将该问题展开成为凸二次优化问题:
根据凸优化问题的一阶条件:
即x满足正规方程
因为我们假设A的列向量是独立的,因此最小二乘逼近问题总有唯一解:x=(ATA)−1ATb
Chebyshev/ 极小极大问题
当标准逼近问题的范数采用l2−范数时,范数逼近问题具体化为:
minimize∥Ax−b∥⋈=max{|r1|,...,|rm|}
该问题成为Chebyshev逼近问题或者极小极大问题.
通常,可以将该问题转化为上镜图形式,得到如下线性规划问题:
minimize tsubject to −t1⪯Ax−b⪯t1
- 残差绝对值之和逼近问题
当标准逼近问题的范数采用l1−范数时,范数逼近问题具体化为:minimize∥Ax−b∥=|r1|+...+|rm|
如同Chebyshev问题,该问题可以转化为线性规划: minimize 1Ttsubject to −t⪯Ax−b⪯t
1.3 罚函数逼近
罚函数逼近问题形式如下:
minimize ψ(r1)+...+ψ(rm)subject to r=Ax−b
ψ:R→R成为残差罚函数. 设ψ为凸函数,则该问题为凸优化问题.
一些常见的罚函数及其逼近问题:
- 带有死区的线性罚函数(死区宽度为a > 0):
ψ(u)={0|u|−a{|u| \le a} {|u| \gt a}
带有死区的线性函数对于小于a的残差不进行惩罚.
- 对数障碍罚函数(极限为a > 0):
图片直观显示:
鲁棒最小二乘\Huber罚函数:
图片直观显示:
More penalty function:
The Figure below shows the contours of the different regularization terms in the parameter space:
2. 最小范数问题
minimize ∥x∥subject to Ax=b
此问题的解为Ax=b的最小范数解. 如果Ax = b 有解,那么这样的解总是存在的. 该问题同样可以转化为凸优化问题来解.
2.1. 重构为范数逼近问题
设x0为Ax=b的一个解,另Z∈Rn×k的列为A的零空间的基.因此Ax=b的通解可以表示为x0+Zu,其中u∈Rk 则,最小范数问题可以重构为标准范数逼近问题.
2.2 最小范数问题的几何解释
问题的可行域{x|Ax=b}是仿射的,目标函数是x和0在范数∥.∥度量下的距离∥x−0∥. 最小范数问题是在仿射集合中寻找距离0最近的点,即求解0向仿射集合{x|Ax=b}的投影.
3. 正则化逼近
双准则式子如下定义,该式子是向量凸优化问题的特例,具体见Chapter 4的正常锥和向量优化部分.
minimize(关于R2+) (||Ax−b||,||x||)
上述问题的一个常用标准表量化方法是正则化,得到极小化目标函数的加权值:
在估计领域,附加的对大的||x||的惩罚可以解释为先验知识:||x||不是很大.
在建模问题中,y=(A+v)x,A是真实观察数据,v是测量误差,较小的x有利于降低测量误差,得到x和y之间的良好逼近
参考文献:
Convex Optimization by Stephen Boyd and Lieven Vandenberghe
Convex Optimization Edx
Vector Basics 子空间以及仿射集合
Math Primer Series: Vectors III: Affine Spaces, Linear and Affine Combinations
Stochastic Gradient Descent
正常锥
Chapter%206.%20Norm%20Approximation%20Notes%20%20%20%20%0A%3D%3D%3D%20%20%20%0A@%5Bconvex%20optimization%7Cmachine%20learning%7Cpublished%5D%20%20%0A%0A%23%231.%20%u8303%u6570%u903C%u8FD1%u95EE%u9898%20%20%0A%u6700%u7B80%u5355%u7684%u8303%u6570%u903C%u8FD1%u95EE%u9898%u5177%u6709%u5982%u4E0B%u5F62%u5F0F%3A%0A%60%60%60mathjax%0A%5Ctext%7Bminimize%20%7D%20%5Cparallel%20Ax%20-%20b%20%5Cparallel%0A%60%60%60%0A%60%24%u5176%u4E2DA%5Cin%20%5Cmathbf%7BR%7D%5E%7Bm%5Ctimes%20%20%7D%u548Cb%5Cin%20%5Cmathbf%7BR%7D%5Em%u662F%u95EE%u9898%u7684%u6570%u636E%uFF0Cx%5Cin%20%5Cmathbf%7BR%7D%5En%u662F%u53C2%u6570%uFF0C%5Cparallel%20.%5Cparallel%u662F%5Cmathbf%7BR%7D%5Em%u4E0A%u7684%u4E00%u79CD%u8303%u6570%uFF0C%u59821%u8303%u6570%uFF0Cl_1%2C%202%u8303%u6570%2Cl_2%u548C%u6700%u5927%u8303%u6570%5Cnsi%20%u7B49%24%60%20%20%20%0A%0A%u4E0A%u8FF0%u8303%u6570%u903C%u8FD1%u95EE%u9898%u662F%u4E00%u4E2A%u53EF%u89E3%u7684%u51F8%u4F18%u5316%u95EE%u9898/%u6216%u8005%u8F6C%u5316%u4E3A%u5BF9%u5076%u95EE%u9898%u4E4B%u540E%uFF0C%u5BF9%u5076%u95EE%u9898%u662F%u51F8%u4F18%u5316%u95EE%u9898%2C%u4E14%u5BF9%u5076%u95EE%u9898%u4E0E%u539F%u95EE%u9898%u7684%u5BF9%u5076%u95F4%u9699%u4E3A0.%u4F8B%u5982%60%24l_1%24%60%u4E0D%u662F%u51F8%u4F18%u5316%u95EE%u9898%uFF0C%u4F46%u662F%u5176%u5BF9%u5076%u95EE%u9898%u662F%u51F8%u4F18%u5316%u95EE%u9898.%20%20%0A%0A%23%23%231.1%20%u8303%u6570%u903C%u8FD1%u95EE%u9898%u7684%u89E3%u91CA%0A-%20%u903C%u8FD1%u7684%u56DE%u5F52%u89E3%u91CA%20%20%0A%60%24%u5C06Ax%u5C55%u5F00%u4E3A%3A%24%60%20%20%20%0A%60%60%60mathjax%0A%20%20%20%20Ax%20%3D%20x_1a_1%20+%20...%20+%20x_na_n%0A%60%60%60%20%20%0A%u53EF%u4EE5%u770B%u51FA%uFF0C%u8303%u6570%u903C%u8FD1%u95EE%u9898%u7684%u76EE%u6807%u662F%u7528A%u7684%u5217%u7684%u7EBF%u6027%u7EC4%u5408%uFF0C%u5217%u7684%u6743%u91CD%u6709x%u7ED9%u5B9A%uFF0C%u6765%u62DF%u5408b.%20%u5176%u635F%u5931%u5927%u5C0F%u6709%60%24%5Cparallel%20.%20%5Cparallel%24%60%u5EA6%u91CF.%20%20%20%0A%0A-%20%u903C%u8FD1%u7684%u4F30%u8BA1%u89E3%u91CA%0A%60%60%60mathjax%0A%20%20%20%20y%20%3D%20Ax%20+%20v%0A%60%60%60%20%20%0A%60%24v%u4E3A%u6D4B%u91CF%u8BEF%u5DEE%uFF0C%24%60%20%20%0A%60%60%60mathjax%0A%20%20%20%20x%20%3D%20%5Ctext%7Bargmin%7D_z%5Cparallel%20Az%20-%20y%20%5Cparallel%0A%60%60%60%20%20%0A-%20%u903C%u8FD1%u7684%u51E0%u4F55%u89E3%u91CA%20%20%0A%60%24%u8003%u8651%u5B50%u7A7A%u95F4%5Cmathcal%7BA%7D%3D%5Cmathcal%7BR%7D%28A%29%5Csubseteq%5Cmathbf%7BR%7D%5Em%u548C%u4E00%u4E2A%u70B9b%5Cin%20%5Cmathbf%7BR%7D%5Em.%20%5Cmathcal%7BA%7D%u4E2D%u4E0E%u70B9b%u8DDD%u79BB%u6700%u8FD1%u7684%u70B9%u662Fb%u5728%5Cmathcal%7BA%7D%u4E2D%u7684%u6295%u5F71u%3A%24%60%20%20%0A%60%60%60mathjax%0A%5Ctext%7Bminimize%7D%20%5Cparallel%20u%20-%20b%20%5Cparallel%20%20%20%5C%5C%0A%5Ctext%7Bsubjext%20to%7D%20u%20%5Cin%20%5Cmathcal%7BA%7D%0A%60%60%60%20%20%0A%u5C06%60%24%5Cmathcal%7BR%7D%28A%29%u4E2D%u7684%u5143%u7D20%u53C2%u6570%u5316%u4E3Au%20%3D%20Ax%24%60%2C%u53EF%u4EE5%u770B%u51FA%u8303%u6570%u95EE%u9898%u7684%u89E3%u7B49%u4EF7%u4E8E%u8BA1%u7B97%u6295%u5F71%u70B9%60%24u%24%60.%20%20%0A%0A%23%23%231.2%20%u8303%u6570%u903C%u8FD1%u95EE%u9898%u7684%u4F8B%u5B50%20%20%20%0A-%20%u52A0%u6743%u8303%u6570%u903C%u8FD1%u95EE%u9898%20%20%0A%u5BF9%u6807%u51C6%u8303%u6570%u903C%u8FD1%u95EE%u9898%u62D3%u5C55%3A%0A%60%60%60mathjax%0A%5Ctext%7Bminimize%7D%20%5Cparallel%20W%28Ax%20-%20b%29%20%5Cparallel%0A%60%60%60%0A%u5176%u4E2D%60%24W%5Cin%20%5Cmathbf%7BR%7D%5E%7Bm%5Ctimes%20m%7D%24%60%2C%u79F0%u4E4B%u4E3A**%u6743%u77E9%u9635**%2C%u901A%u5E38%u662F%u5BF9%u89D2%u7684.%20%u8FD9%u65F6%uFF0C%u6743%u77E9%u9635%u7ED9%u51FA%u4E86%u5BF9%u6B8B%u5DEE%u5411%u91CF%60%24r%20%3D%20Ax%20-%20b%24%60%u7684%u5404%u5206%u91CF%u4E4B%u95F4%u4E0D%u540C%u7684%u76F8%u5BF9%u91CD%u89C6%u7A0B%u5EA6.%20%20%0A%0A%60%24%5Cparallel%20Wz%20%5Cparallel%20%u901A%u5E38%u7528%u7B26%u53F7%20%5Cparallel%20z%20%5Cparallel%20_W%u8868%u793A.%24%60%20%20%0A%0A-%20%u6700%u5C0F%u4E8C%u4E58%u903C%u8FD1%u95EE%u9898%20%0A%u5F53%u6807%u51C6%u903C%u8FD1%u95EE%u9898%u7684%u8303%u6570%u91C7%u7528Euclid%u6216%u8005%60%24l_2-%u8303%u6570%24%60%u65F6%uFF0C%u95EE%u9898%u5177%u4F53%u5316%u4E3A%u6700%u5C0F%u4E8C%u4E58%u903C%u8FD1%u95EE%u9898%3A%0A%60%60%60mathjax%0A%5Ctext%7Bminimize%7D%20%5Cparallel%20Ax%20-%20b%20%5Cparallel%20%3D%20r_1%5E2%20+%20r_2%5E2%20+%20...%20+%20r_m%5E2%0A%60%60%60%20%20%0A%u8BE5%u76EE%u6807%u51FD%u6570%u4E3A%u6B8B%u5DEE%u7684%u5E73%u65B9%u548C.%20%20%u5C06%u8BE5%u95EE%u9898%u5C55%u5F00%u6210%u4E3A%u51F8%u4E8C%u6B21%u4F18%u5316%u95EE%u9898%3A%20%20%0A%60%60%60mathjax%0Af%28x%29%20%3D%20x%5ETA%5ETAx%20-%202b%5ETAx%20+%20b%5ETb%0A%60%60%60%20%20%0A%u6839%u636E%u51F8%u4F18%u5316%u95EE%u9898%u7684%u4E00%u9636%u6761%u4EF6%3A%0A%60%60%60mathjax%0A%5Ctriangledown%20f%28x%29%20%3D%202A%5ETAx%20-%202A%5ETb%20%3D%200%0A%60%60%60%0A%u5373x%u6EE1%u8DB3**%u6B63%u89C4%u65B9%u7A0B**%20%0A%60%60%60mathjax%0A2A%5ETAx%20%3D%202A%5ETb%0A%60%60%60%20%20%0A%u56E0%u4E3A%u6211%u4EEC*%u5047%u8BBEA%u7684%u5217%u5411%u91CF%u662F%u72EC%u7ACB%u7684*%uFF0C%u56E0%u6B64%u6700%u5C0F%u4E8C%u4E58%u903C%u8FD1%u95EE%u9898%u603B%u6709%u552F%u4E00%u89E3%3A%60%24x%20%3D%20%28A%5ETA%29%5E%7B-1%7DA%5ETb%24%60%20%20%0A%0A-%20Chebyshev/%20%u6781%u5C0F%u6781%u5927%u95EE%u9898%20%20%0A%u5F53%u6807%u51C6%u903C%u8FD1%u95EE%u9898%u7684%u8303%u6570%u91C7%u7528%60%24l_2-%24%60%u8303%u6570%u65F6%uFF0C%u8303%u6570%u903C%u8FD1%u95EE%u9898%u5177%u4F53%u5316%u4E3A%3A%20%20%0A%60%60%60mathjax%0A%5Ctext%7Bminimize%7D%20%5Cparallel%20Ax%20-%20b%20%5Cparallel%20_%5Cbowtie%20%3D%20%5Cmax%20%5C%7B%7Cr_1%7C%2C...%2C%7Cr_m%7C%5C%7D%0A%60%60%60%20%20%0A%u8BE5%u95EE%u9898%u6210%u4E3A**Chebyshev%u903C%u8FD1%u95EE%u9898**%u6216%u8005**%u6781%u5C0F%u6781%u5927%u95EE%u9898**.%20%20%0A%u901A%u5E38%uFF0C%u53EF%u4EE5%u5C06%u8BE5%u95EE%u9898%u8F6C%u5316%u4E3A%u4E0A%u955C%u56FE%u5F62%u5F0F%uFF0C%u5F97%u5230%u5982%u4E0B%u7EBF%u6027%u89C4%u5212%u95EE%u9898%3A%20%20%0A%60%60%60mathjax%0A%5Ctext%7Bminimize%20%7D%20t%20%5C%5C%0A%5Ctext%7Bsubject%20to%20%7D%20-t%5Cmathbf%7B1%7D%20%5Cpreceq%20Ax%20-%20b%20%5Cpreceq%20t%5Cmathbf%7B1%7D%0A%60%60%60%0A-%20%u6B8B%u5DEE%u7EDD%u5BF9%u503C%u4E4B%u548C%u903C%u8FD1%u95EE%u9898%20%20%0A%u5F53%u6807%u51C6%u903C%u8FD1%u95EE%u9898%u7684%u8303%u6570%u91C7%u7528%60%24l_1-%24%60%u8303%u6570%u65F6%uFF0C%u8303%u6570%u903C%u8FD1%u95EE%u9898%u5177%u4F53%u5316%u4E3A%3A%0A%60%60%60mathjax%0A%5Ctext%7Bminimize%7D%20%5Cparallel%20Ax%20-%20b%20%5Cparallel%20%3D%20%7Cr_1%7C%20+%20...%20+%20%7Cr_m%7C%0A%60%60%60%20%20%0A%u5982%u540CChebyshev%u95EE%u9898%uFF0C%u8BE5%u95EE%u9898%u53EF%u4EE5%u8F6C%u5316%u4E3A%u7EBF%u6027%u89C4%u5212%3A%20%0A%60%60%60mathjax%0A%5Ctext%7Bminimize%20%7D%20%5Cmathbf%7B1%7D%5ETt%20%5C%5C%0A%5Ctext%7Bsubject%20to%20%7D%20-t%20%5Cpreceq%20Ax%20-%20b%20%5Cpreceq%20t%0A%60%60%60%20%20%0A%0A%23%23%231.3%20%u7F5A%u51FD%u6570%u903C%u8FD1%20%20%0A%u7F5A%u51FD%u6570%u903C%u8FD1%u95EE%u9898%u5F62%u5F0F%u5982%u4E0B%3A%20%0A%60%60%60mathjax%0A%5Ctext%7Bminimize%20%7D%20%5Cpsi%28r_1%29%20+%20...%20+%20%5Cpsi%28r_m%29%20%5C%5C%0A%5Ctext%7Bsubject%20to%20%7D%20r%20%3D%20Ax%20-%20b%0A%60%60%60%20%20%0A%60%24%5Cpsi%3A%20%5Cmathbf%7BR%7D%20%5Crightarrow%20%5Cmathbf%7BR%7D%24%60%u6210%u4E3A%u6B8B%u5DEE%u7F5A%u51FD%u6570.%20%u8BBE%60%24%5Cpsi%24%60%u4E3A%u51F8%u51FD%u6570%uFF0C%u5219%u8BE5%u95EE%u9898%u4E3A%u51F8%u4F18%u5316%u95EE%u9898.%20%20%0A%0A%u4E00%u4E9B%u5E38%u89C1%u7684%u7F5A%u51FD%u6570%u53CA%u5176%u903C%u8FD1%u95EE%u9898%3A%0A-%20%u5E26%u6709%u6B7B%u533A%u7684%u7EBF%u6027%u7F5A%u51FD%u6570%28%u6B7B%u533A%u5BBD%u5EA6%u4E3Aa%20%3E%200%29%3A%0A%60%60%60mathjax%0A%5Cpsi%28u%29%20%3D%20%5Ccases%7B%7B0%7D%26%7B%7Cu%7C%20%5Cle%20a%7D%20%5C%5C%20%7B%7Cu%7C%20-%20a%7D%26%7B%7Cu%7C%20%5Cgt%20a%7D%20%7D%20%20%0A%60%60%60%0A%u5E26%u6709%u6B7B%u533A%u7684%u7EBF%u6027%u51FD%u6570%u5BF9%u4E8E%u5C0F%u4E8Ea%u7684%u6B8B%u5DEE%u4E0D%u8FDB%u884C%u60E9%u7F5A.%20%0A-%20%u5BF9%u6570%u969C%u788D%u7F5A%u51FD%u6570%28%u6781%u9650%u4E3Aa%20%3E%200%29%3A%20%0A%60%60%60mathjax%0A%u516C%u5F0F%u65E0%u6CD5%u663E%u793A...%0A%60%60%60%20%20%0A%u56FE%u7247%u76F4%u89C2%u663E%u793A%3A%20%20%0A%21%5BAlt%20text%5D%28data%3Aimage%2Clocal%3A//6.1.jpg%29%20%20%0A%0A---%0A%u9C81%u68D2%u6700%u5C0F%u4E8C%u4E58%5CHuber%u7F5A%u51FD%u6570%3A%0A%60%60%60mathjax%0A%u516C%u5F0F%u65E0%u6CD5%u663E%u793A...%0A%60%60%60%0A%u56FE%u7247%u76F4%u89C2%u663E%u793A%3A%20%0A%21%5BAlt%20text%5D%28data%3Aimage%2Clocal%3A//6.4.jpg%29%20%20%0A%0AMore%20penalty%20function%3A%20%20%0A%21%5BAlt%20text%5D%28http%3A//scikit-learn.org/0.11/_images/plot_sgd_loss_functions_11.png%29%20%20%0A%0AThe%20Figure%20below%20shows%20the%20contours%20of%20the%20different%20regularization%20terms%20in%20the%20parameter%20space%3A%20%20%0A%21%5BAlt%20text%5D%28http%3A//scikit-learn.org/0.11/_images/plot_sgd_penalties_11.png%29%0A%0A----%0A%23%232.%20%u6700%u5C0F%u8303%u6570%u95EE%u9898%20%20%0A%60%60%60mathjax%0A%5Ctext%7Bminimize%20%20%20%7D%20%5Cparallel%20x%20%5Cparallel%20%5C%5C%0A%5Ctext%7Bsubject%20to%20%7D%20Ax%20%3D%20b%0A%60%60%60%0A%u6B64%u95EE%u9898%u7684%u89E3%u4E3A%60%24Ax%20%3D%20b%24%60%u7684%u6700%u5C0F%u8303%u6570%u89E3.%20%u5982%u679CAx%20%3D%20b%20%u6709%u89E3%uFF0C%u90A3%u4E48%u8FD9%u6837%u7684%u89E3%u603B%u662F%u5B58%u5728%u7684.%20%u8BE5%u95EE%u9898%u540C%u6837%u53EF%u4EE5%u8F6C%u5316%u4E3A%u51F8%u4F18%u5316%u95EE%u9898%u6765%u89E3.%20%20%0A%23%23%232.1.%20%u91CD%u6784%u4E3A%u8303%u6570%u903C%u8FD1%u95EE%u9898%20%20%0A%60%24%u8BBEx_0%u4E3AAx%20%3D%20b%u7684%u4E00%u4E2A%u89E3%uFF0C%u53E6Z%20%5Cin%20%5Cmathbf%7BR%7D%5E%7Bn%5Ctimes%20k%7D%u7684%u5217%u4E3AA%u7684%u96F6%u7A7A%u95F4%u7684%u57FA.%20%u56E0%u6B64Ax%20%3D%20b%u7684%u901A%u89E3%u53EF%u4EE5%u8868%u793A%u4E3Ax_0%20+%20Zu%2C%u5176%u4E2Du%5Cin%20%5Cmathbf%7BR%7D%5Ek%24%60%20%20%u5219%uFF0C%u6700%u5C0F%u8303%u6570%u95EE%u9898%u53EF%u4EE5%u91CD%u6784%u4E3A%u6807%u51C6%u8303%u6570%u903C%u8FD1%u95EE%u9898.%20%0A%60%60%60mathjax%0A%5Ctext%7Bminimize%20%7D%20%5Cparallel%20x_0%20+%20Zu%20%5Cparallel%20%0A%60%60%60%20%20%0A%23%23%232.2%20%u6700%u5C0F%u8303%u6570%u95EE%u9898%u7684%u51E0%u4F55%u89E3%u91CA%0A%u95EE%u9898%u7684%u53EF%u884C%u57DF%60%24%5C%7Bx%7CAx%20%3D%20b%5C%7D%24%60%u662F%u4EFF%u5C04%u7684%2C%u76EE%u6807%u51FD%u6570%u662Fx%u548C0%u5728%u8303%u6570%60%24%5Cparallel%20.%20%5Cparallel%20%24%60%u5EA6%u91CF%u4E0B%u7684%u8DDD%u79BB%60%24%5Cparallel%20x%20-%200%20%5Cparallel%24%60.%20%u6700%u5C0F%u8303%u6570%u95EE%u9898%u662F%u5728%u4EFF%u5C04%u96C6%u5408%u4E2D%u5BFB%u627E%u8DDD%u79BB0%u6700%u8FD1%u7684%u70B9%2C%u5373%u6C42%u89E30%u5411%u4EFF%u5C04%u96C6%u5408%60%24%5C%7Bx%7CAx%20%3D%20b%5C%7D%24%60%u7684%u6295%u5F71.%20%20%0A%0A%23%233.%20%u6B63%u5219%u5316%u903C%u8FD1%20%20%20%0A%u53CC%u51C6%u5219%u5F0F%u5B50%u5982%u4E0B%u5B9A%u4E49%uFF0C%u8BE5%u5F0F%u5B50%u662F%u5411%u91CF%u51F8%u4F18%u5316%u95EE%u9898%u7684%u7279%u4F8B%uFF0C%u5177%u4F53%u89C1Chapter%204%u7684%5B%u6B63%u5E38%u9525%5D%28http%3A//en.wikipedia.org/wiki/Convex_cone%29%u548C%u5411%u91CF%u4F18%u5316%u90E8%u5206.%20%0A%60%60%60mathjax%0A%5Ctext%7Bminimize%7D%28%u5173%u4E8E%5Cmathbf%7BR%7D%5E2_+%29%20%5C%20%28%7C%7CAx%20-%20b%7C%7C%2C%20%7C%7Cx%7C%7C%29%0A%60%60%60%20%20%0A%u4E0A%u8FF0%u95EE%u9898%u7684%u4E00%u4E2A%u5E38%u7528%u6807%u51C6%u8868%u91CF%u5316%u65B9%u6CD5%u662F%u6B63%u5219%u5316%uFF0C%u5F97%u5230%u6781%u5C0F%u5316%u76EE%u6807%u51FD%u6570%u7684%u52A0%u6743%u503C%3A%0A%60%60%60mathjax%0A%5Ctext%7Bminimize%7D%20%5C%20%7C%7CAx%20-%20b%7C%7C%20+%20%5Cgamma%7C%7Cx%7C%7C%20%0A%60%60%60%20%20%0A%u5728%u4F30%u8BA1%u9886%u57DF%uFF0C%u9644%u52A0%u7684%u5BF9%u5927%u7684%7C%7Cx%7C%7C%u7684%u60E9%u7F5A%u53EF%u4EE5%u89E3%u91CA%u4E3A%u5148%u9A8C%u77E5%u8BC6%3A%7C%7Cx%7C%7C%u4E0D%u662F%u5F88%u5927.%20%20%0A%60%24%u5728%u5EFA%u6A21%u95EE%u9898%u4E2D%2Cy%20%3D%20%28A%20+%20v%29x%2C%20A%u662F%u771F%u5B9E%u89C2%u5BDF%u6570%u636E%uFF0Cv%u662F%u6D4B%u91CF%u8BEF%u5DEE%uFF0C%u8F83%u5C0F%u7684x%u6709%u5229%u4E8E%u964D%u4F4E%u6D4B%u91CF%u8BEF%u5DEE%uFF0C%u5F97%u5230x%u548Cy%u4E4B%u95F4%u7684%u826F%u597D%u903C%u8FD1%24%60%0A%0A%0A%0A%23%23%u53C2%u8003%u6587%u732E%uFF1A%20%20%0A%5BConvex%20Optimization%20by%20Stephen%20Boyd%20and%20Lieven%20Vandenberghe%5D%28http%3A//book.douban.com/subject/1888111/%29%0A%5BConvex%20Optimization%20Edx%5D%28https%3A//class.stanford.edu/courses/Engineering/CVX101/Winter2014/info%29%20%20%20%0A%5BVector%20Basics%5D%28http%3A//inst.eecs.berkeley.edu/%7Eee127a/book/login/l_vecs_basics.html%29%20%u5B50%u7A7A%u95F4%u4EE5%u53CA%u4EFF%u5C04%u96C6%u5408%20%20%0A%5BMath%20Primer%20Series%3A%20Vectors%20III%3A%20Affine%20Spaces%2C%20Linear%20and%20Affine%20Combinations%5D%28http%3A//blogs.msdn.com/b/rezanour/archive/2011/06/26/math-primer-series-vectors-iii-affine-spaces-linear-and-affine-combinations.aspx%29%20%20%0A%5BStochastic%20Gradient%20Descent%5D%28http%3A//scikit-learn.org/0.11/modules/sgd.html%29%20%20%0A%5B%u6B63%u5E38%u9525%5D%28http%3A//www.zfm.ethz.ch/e../dynamics/moeller_consistenintegration.htm%29